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Abstract. A general model is presented whereby 
ligand-induced changes in protein dynamics could 
produce allosteric communication between distinct 
binding sites, even in the absence of a macromole- 
cular conformational change. Theoretical .analysis, 
based on the statistical thermodynamics of ligand 
binding, shows that cooperative interaction free 
energies amounting to several kJ .  mo1-1 may be 
generated by this means. The effect arises out of the 
possible changes in frequencies and amplitudes of 
macromolecular thermal fluctuations in response to 
ligand attachment, and can involve all forms of 
dynamic behaviour, ranging from highly correlated, 
low-frequency normal mode vibrations to random 
local anharmonic motions of individual atoms or 
groups. Dynamic allostery of this form is primarily an 
entropy effect, and we derive approximate expres- 
sions which might allow the magnitude of the 
interaction in real systems to be calculated directly 
from experimental observations such as changes in 
normal mode frequencies and mean-square atomic 
displacements. Long-range influence of kinetic pro- 
cesses at different sites might also be mediated by a 
similar mechanism. We suggest that proteins and 
other biological macromolecules may have evolved to 
take functional advantage not only of mean confor- 
mational states but also of the inevitable thermal 
fluctuations about the mean. 

Key words: Protein dynamics, fluctuations, allostery, 
cooperativity 

Introduction 

Allosteric effects, involving communication between 
distant ligand-binding sites on biological macromo- 
lecules, are central to many physiological control and 
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receptor processes. Conventionally, these effects are 
ascribed to ligand-induced conformational changes 
transmitted through the macromolecule and across 
subunit boundaries. Monod et al. (1965) graphically 
demonstrated how this concept could explain quan- 
titatively many of the observed cooperative and 
linkage phenomena in proteins - and yet even in this 
seminal paper it was emphasized that the concept of 
"conformational t rans i t ion . . ,  should be understood 
in its widest connotation", and not solely in the strict 
stereochemical sense that we usually use today. 
Accordingly, we wish to develop here one of the 
alternative mechanisms for long-range site-site inter- 
action (Cooper 1980; Salemme 1978) based on 
current thinking about the dynamic properties of 
proteins. We will show that it is possible to explain 
cooperative ligand binding in terms of the frequency 
and amplitude of atomic motions about fixed mean 
positions, i.e., without a conformational change in 
any sense that could be determined structurally. 

The conformation of a macromolecule, as 
defined, for example, by X-ray crystallography, gives 
the mean atomic positions averaged over a large 
number of, supposedly, identical molecules and over 
times which are long compared to typical molecular 
motions. We now know, however, from fundamental 
theoretical considerations and from a wide variety of 
experiments, that individual macromolecules are 
dynamic objects undergoing various forms of intra- 
molecular motion (for recent reviews, see: Cooper 
1980; Gurd and Rothgeb 1979; McCammon and 
Karplus, 1983; Careri et al. 1979). These fluctuations 
have been variously described in terms of vibration, 
libration, or rotation of individual chemical groups, 
global oscillations of protein domains, "hinge bend- 
ing", "breathing", "local unfolding", and so on, and 
can involve relative motion over several angstroms 
covering the entire time spectrum. Thermally excit- 
able low-frequency vibrations (~< 200 cm -1) in glob- 
ular proteins have been detected experimentally 
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(Peticolas 1979; Jacrot et al. 1982; Middendorf 1984) 
and demonstrated by theoretical normal mode anal- 
ysis to involve cooperative motions spanning entire 
molecules (G6 1980, G6 et al. 1983; Brooks and 
Karplus 1983). Anharmonic and aperiodic motions 
are predicted by molecular dynamics simulations 
(McCammon and Karplus 1983; Levitt 1983a, b) and 
are also indicated by various experimental observa- 
tions (Cooper 1980; Gurd and Rothgeb 1979). Such 
dynamic phenomena are not unique to biological 
macromolecules, being simply a manifestation of heat 
energy (Cooper 1976), but the thermodynamic fluc- 
tuations involved are quite large in these relatively 
small systems, and we might expect that, during 
evolution, any useful dynamic phenomena might 
become part of the repertoire of these systems. For 
example, in the present context of allostery, since the 
information content of a macromolecule consists not 
only of its average conformation but also of the 
frequencies and amplitudes of fluctuation about this 
conformation, communication across the molecule 
could go via changes in these dynamic frequencies 
and amplitudes, independently or even in the absence 
of conformation change. 

We should emphasize from the start that it is not 
our intention to deny the existence or significance of 
conformational changes in protein receptor and 
control functions - but, rather, to illustrate that 
equally plausible, quantifiable alternatives do 
exist. 

Statistical thermodynamics 
of multiple ligand binding 

Sturtevant (1977) has discussed the various factors 
which contribute to the thermodynamics of protein 
interactions, emphasizing the significance of dynamic 
(vibrational) contributions. In reviewing the available 
data, he notes the almost universal decrease in heat 
capacity (i.e., negative ACp) associated with pro- 
tein-ligand binding and points out how this could 
arise from the loss of many internal, vibrational 
degrees of freedom. Similar conclusions may be 
reached by more general treatment of thermody- 
namic fluctuations (Cooper 1976), which shows that a 
decrease in heat capacity of a system inevitably 
implies that the thermal energy fluctuations in the 
system are reduced. Thus, we can picture the usual 
effects of ligand-binding to be a "stiffening" of the 
protein structure, although cases may be imagined in 
which the reverse is true. We wish to analyse in more 
detail the thermodynamic consequences of this. 

Textbook statistical thermodynamics (e.g., Hill 
1960; McQuarrie 1976; Davidson 1962) gives the free 
energy of molecular association in terms of the 

canonical partition functions of the molecular species 
involved. Thus, for the ligand-binding equilibrium at 
constant volume: 

g i  
E +  L ~ EL~ 

the dissociation constant is given by: 

KI = e-A~'/kT" QoQL 
QI ' 

where A81 = 8 E + e L - -  f E L l  is the difference in 
ground state energies corresponding to the (hypo- 
thetical) energy of ligand binding at 0 K in the 
absence of thermal motion, and Q0, Q1, and QL are 
the partition functions for the free enzyme (E), the 
binary complex (EL1) and the free ligand (L), 
respectively. In the absence of significant volume 
changes, the Gibbs free energy of reaction is 

A G1 = - k T  In K1 

= A f , -  kT- ln / \ |Q°QL| .  
\ Q, / 

Subsequent binding steps (at different sites) can be 
treated similarly, thus: 

ELI  + L ~ EL2 , etc. 

AG~ = A e ,  - k T .  In (QJQL~ 
- ~ \ Q 2 1 '  

where AE 2 = EEL 1 --k E L -- 8,EL2; Q2 refers to the 
ternary complex (EL2); and so on. 

The difference A A  G = A G 2 - z] G 1 in binding 
free energies is a measure of the cooperativity 
(allostery) and may be written: 

A A G = A f g - A e l - k T . l n (  Q~ ~ ,  
- \QoQ2/ 

If we restrict our attention to the binding of 
identical ligands to (formally) identical and physically 
distant binding sites then Af2  = Ae~, since the same 
molecular contacts are involved in each site, and 

A A G = - k T . I n {  Q~ ~ .  
\QoQ2/ 

The canonical partition function of a system is 
defined as Q = Z i e - e {  kr, where the summation is 
taken over all possible states, i, of the system with 
energies E i. These will include all allowed transla- 
tional, rotational, vibrational, electronic, and con- 
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formational states of the protein, or complex, as 
appropriate. As is conventional, we may assume 
separability and write 

Q = qT~a~ "qRot'qVib'qElect'qConf 

and examine each contribution in turn. (For simplic- 
ity, we will ignore other possible internal modes of 
motion, such as free rotation of chemical groups, and 
assume that, at least formally, they may be treated as 
internal vibrational modes or different conformation- 
al substates.) The electronic energy level contribu- 
tions may be eliminated from the start since they are 
not significantly excited at normal temperatures, and 
any changes in ground-state levels due to bond 
formation in the EL complex have already been 
assumed in the A e terms. 

The partition functions representing global trans- 
lation and rotation of the entire protein molecule, 
qTrans and qRot, are given by standard expressions 
which depend on the mass and moments of inertia of 
the molecule, respectively (Hill 1960; Davidson 1962; 
McQuarrie 1976). If we assume that the ligands are 
small compared to the enzyme, then these terms are 
numerically very similar for the different ligated 
states and effectively cancel in the expression for 
AAG. 

This leaves: 

A A G : - k T . { l n (  q ~  +ln(q~ 
\qoq2/ Vib \qoq2/ Conf) 

which identifies two possible sources of cooperativity 
between the two binding sites. The first term gives 
rise to a finite AA G if there are changes induced in 
the vibrational spectrum of the system by ligand 
binding. The second term in the equation expresses 
any effects of conformational change in the conven- 
tional sense, plus more subtle dynamic effects which 
we shall examine later. 

The vibrational contribution 

The vibrational partition function of the ith. normal 
mode of a system, with frequency vi, taking quantized 
energy levels nhvi (n = 0, 1, 2 . . . )  and incorporating 
the zeropoint energy (1/2hvi) into the ground state 
energy term, is given by 

qVib(Vi)  = ( l  - -  e -h r '  kT) i 

which, in the classical limit kT >> hvi, becomes 

kT 
q ('Pi)CI .... = - -  

hv 

(Hill 1960; Davidson 1962; McQuarrie 1976). 

For the complete spectrum of normal modes in the 
system the total vibrational partition function is given 
by the product 

where g(vi) is the spectral density of normal modes 
and represents the degeneracy (multiplicity) at each 
frequency. 

Thus, in our simple case of sequential binding of 
two ligands, the vibrational contribution to any 
differences in site-binding affinity is 

AAGvib = - k T  ~ [g0(v) + g2(v) - 2gi(v)] In q(v), 
v 

where, as before, the subscripts refer to the different 
states of ligation of the enzyme and the term [g0(v) + 
g2(v) - 2gl(v)] represents any ligand-induced changes 
in the normal mode spectrum. 

In the simplest case where binding of ligands has 
no effect on normal mode spectra, go = gl = g2 at all 
frequencies, and there is no difference in binding free 
energies at each site. Similarly, if only high frequency 
modes are affected (hv > kT) the (quantum) partition 
function is essentially unity (i.e., high frequency 
modes are not thermally excited) and again AAGvi b 

0 .  

More interesting, however, is the case of low- 
frequency modes. Imagine the situation in which a 
single thermally excited mode of the free enzyme, Vo, 
undergoes frequency shifts v0 ~ vl --~ v2 during the 
sequential binding process E ---> EL 1 ---> EL> In this 
case 

zl/1Gvib = - k T  {In q(vo) + In q(v2) - 2 In q(vl)} . 

If the frequency shifts are small, such that they may 
all be treated classicially, then substitution of the 
appropriate partition functions give 

AA GVib ~ - - k T -  In v~ 

so that if, as we anticipate, ligand binding induces a 
"stiffening" in the protein to give higher normal 
mode frequencies, then AA G will indeed be finite and 
negative - indicating positive cooperativity in ligand 
binding. (Strictly speaking, the condition for negative 
AAG in this classical limit is v12> roy 2. It is also 
feasible that the reverse is true and that AAG is 
positive, i.e., negative cooperativity.) The magnitude 
of the effect can only be guessed at in the absence of 
detailed normal mode analysis of an appropriate 
system, but even a modest 10% increase in frequency 
at each binding step would give AAG of order -0.01 
kT per mode. Bearing in mind that there are several 
hundred low-frequency modes in any protein of 
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reasonable size (Sturtevant 1977; G6 et al. 1983; 
Brooks and Karplus 1983), which might all be 
affected, it is not difficult to arrive at cooperative free 
energies of the order of a few kJ .  tool -1 in this 
classical limit. (kT -- 2.5 kJ • tool -1 at room temper- 
ature.) 

But, in addition to small frequency shifts resulting 
from an overall stiffening of the protein structure, 
there are likely to be much larger ligand-induced 
effects on specific modes of vibration. For example, a 
soft "hinge-bending" mode involving collective 
motions of lobes or domains of polypeptide about an 
active site, such as has been described for lysozyme 
(McCammon et al. 1976), might well become "fro- 
zen" or converted to higher frequency modes by 
ligand binding at the hinge region. This intuitive 
picture is supported by the inelastic neutron scat- 
tering analysis of lysozyme (Middendorf 1984) and 
hexokinase (Jacrot et al. 1982) - both of which show 
an apparent loss of low-frequency modes on ligand 
binding (though details of the hexokinase experiment 
are proving difficult to reproduce: S. Cusack, per- 
sonal communication). 

Analysis of simple molecular models (unpub- 
lished work) also indicates that thermally excited 
collective modes strongly coupled to ligand binding 
sites can be effectively suppressed and converted to 
non-excited high frequency vibrations by the attach- 
ment of small ligands to the equilibrium conforma- 
tion. 

Thermodynamic analysis of this case requires the 
use of the fully quantized partition function, and 
gives 

AAGvib = - kT • In \UoU2,1 

where 

U i  = 1 - e - h ~ / k T  . 

A typical low-frequency global mode, with 
v0 = 50 cm -1, converted to higher frequencies (vl, v2 
> 500 cm -1) on ligation, would provide AAGvi  b <~ 
-1 .4  kT, for each such mode affected. This corre- 
sponds to cooperative interactions of about 2.1 
kJ .  mo1-1 at room temperature. One or two such 
modes would amply describe the magnitudes of 
typical cooperative interactions. 

Separating the interaction free energy into its 
enthalpy and entropy components 

A A G  = A A H -  T .  A A S  

we obtain: 

_ _  h v 2  e_hV2/kT 2hv~ - h v j / k T  A A H  = hvo . e _ h v o , k T  -k- . . . .  e 
Uo U2 U1 

A A S  = k .  In + - -  
\ UoU2] T 

showing that the cooperative interaction is primarily 
an entropy effect. A A H  is normally positive ( -  0.6 kT 
with the parameters used above), but is offset by the 
larger, positive entropy contribution. This implies, 
interestingly, that binding of the first ligand is more 
exothermic, despite the stronger binding of the 
second ligand. (Note that in the classical limit 
A A H =  O, and the cooperative effect is entirely 
entropic. This is a consequence of the equipartition 
theorem in which, without quantization, all oscilla- 
tors have the same mean internal energy, kT, 
regardless of frequency.) The origin of this vibra- 
tional contribution to cooperative ligand binding can 
thus be seen as follows: the free enzyme has a 
multiplicity of thermally excited, low-frequency 
vibrational modes, many of which involve motions 
spanning the entire macromolecule and coupling 
distant ligand binding sites. On introduction of the 
first ligand to one of the sites, enzyme-ligand contacts 
are formed which stabilize the complex and may, or 
may not, induce a change in conformation of the 
polypeptide. Concomitantly, the protein structure is 
stiffened so that some vibrational modes are shifted 
to higher frequencies where they are less thermally 
excited. The consequent release of thermal energy is, 
however, more than cancelled by the loss of vibra- 
tional entropy in these modes, and the net effect is to 
reduce the overall ligand binding free energy. 
Because of the non-linear nature of the thermody- 
namics (i.e., the exponential Boltzmann factor) these 
effects are significantly less for the binding of the 
second ligand which, therefore, has a higher ther- 
modynamic affinity for its site. 

In concluding this section, we should make some 
mention of the effect of damping since, it might be 
argued, in the presence of solvent and internal 
viscosity a protein does not vibrate perpetually like a 
tuning fork. This is true. But the solvent, as well as 
acting as a damper on motion, also acts as a source of 
fluctuations which excite motion by molecular colli- 
sions, Brownian motion, and the like. Thus, viewed 
classically, although harmonic oscillations may be 
rapidly damped out, they are equally rapidly being 
excited by solvent collisions, and the actual motion 
consists of perpetual random excitation and decay of 
different levels of the different vibrational modes 
(McCammon et al. 1976). It is precisely the average 
of this motion which is calculated by statistical 
thermodynamics. The quantum mechanical treat- 
ment of damped harmonic oscillators (Greenberger 
1979a, b) leads to essentially the same picture. 
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The dynamic conformational contribution 

Harmonic oscillations are not, of course, the only 
form that fluctuations in protein structure might take. 
The more general view, supported by molecular 
dynamics simulations (Levitt 1983a, b) is of the 
protein wandering in a haphazard and non-periodic 
fashion amongst a multitude of possible conforma- 
tional states, with any harmonic motions superim- 
posed. The width of the probability distribution of 
these conformational substates, and the associated 
partition function, can be viewed as a measure of the 
"flexibility" of the protein and will determine its 
average observed properties. The response to ligand 
binding might be two-fold: firstly, the presence of a 
ligand may stabilise certain of the conformational 
substates over others and result in a shift in the mean 
of the probability distribution, i.e., a conformational 
change in the conventional sense. Secondly, the shape 
of the distribution might be affected - a narrower 
distribution representing a "stiffening" of the protein 
structure due to ligand binding. Both of these effects 
would be reflected in the thermodynamics of ligand 
attachment, and the second, due to the change in 
conformational dynamics, could occur even in the 
absence of a gross conformational change. 

To estimate the magnitude of such effects and to 
relate them to observable properties of the protein 
structure, we need to consider the contribution 

AAGconf = - k T ' l n  f q~ ~ , 
I.q0q2Jconf 

where each partition function is of the form of a 
summation 

V ~  E ( R ) / k T  q = 2., e 
all R 

and E(R) represents the generalized potential energy 
of the protein (n atoms) as a function of the 
3n-dimensional conformation R = {xl,yl,zl; 
x2,Y2,Z2; . . . . .  xn,y~,zn}. (We shall assume classical 
dynamics so that the kinetic energy contributions are 
identical for each state of ligation and cancel in the 
expression for AAG). An exact calculation would 
require evaluation of the partition function 
qo,ql,q2.. • for each liganded state, which is beyond 
our present capabilities. However, we may proceed 
with the aid of two simplifying assumptions. 

Firstly, we will assume that each q may be written 
as a product of the 3n individual atomic coordinate 
partition functions. 

3n 

q=-- H q i .  
i 1 

This is equivalent to assuming that the motion of 
individual atoms, or groups, is uncorrelated, with 
each moving in a mean field generated by all the 
others. Although this is unrealistic, it has the virtue of 
being at the opposite extreme to the highly correlated 
motions assumed in the analysis of the normal mode 
vibrational contributions, and allows us to write 

AAGc°~ = - k T  ~ ln ( q~ t 

where the summation is over all coordinates and the 
term in brackets now represents the contribution 
from each atomic coordinate. 

Many of these terms in the summation might 
cancel because of molecular symmetry. For example, 
in the case of a system with two identical ligand 
binding sites (i.e., usually a dimer of symmetry-re- 
lated monomers),  for each atom i there will be an 
equivalent atom i' in an identical molecular environ- 
ment, (e.g., on the opposite subunit). We must 
consider the combined effect of symmetry-related 
pairs of coordinates 

A A G i = - k T l n { ( q ~  ~ ( q ~ l  ~.  
\qoq2/i \qoq2/i'J 

From symmetry: 

qo(i) = qo(i') 

and 

q2(i) = q2(i') • 

If the conformational effects of ligand binding are 
only short range, then no cooperativity occurs, i.e., 
binding of the first ligand might affect atom i [q0(i) --+ 
ql(i)], but not i'[qo(i' ) = ql(i')]. Similarly, binding of 
the second ligand would affect i'[ql(i' ) ---> q2(i')] but 
not i [q2(i) = ql(i)]; all the terms cancel and AAG i = 
0. This is merely a mathematical statement of what is 
intuitively expected: that in order to mediate com- 
munication between distant ligand sites, any atom 
must in some way "feel" the presence of ligand at 
each of the sites. But this effect depends on the 
thermodynamic partition functions and may result 
not only from a conformational change in the position 
of the atom but also from a change in the dynamic 
fluctuations about its mean position. 

To see this, we make our second simplifying 
assumption: that the fluctuations in atomic coordi- 
nates are approximately Gaussian, of width e (which 
will be different for each atom). For a Gaussian 
probability distribution about a fixed mean position 
(i.e., without conformational change) the atomic 
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partition function is proportional to the width, a (see 
Hill 1960, for example). Thus, using the symmetry 
arguments for two identical sites: 

I-a,(i)- al(/ ')]  
A A G i : - 2 k T . l n [  ; o ~  2 J ,  

where o0, a 2 are the root-mean-square fluctuations of 
coordinate i in the unliganded and fully liganded 
states, respectively; al(i ) and al(i' ) represent the rms 
fluctuations at i and i' when only one ligand site is 
occupied. This gives the purely dynamic contribution 
to the interaction between the ligand sites in terms of 
quantities that may be visualized and, in principle, 
measured experimentally. 

In practice, ligand-induced changes in conforma- 
tional fluctuations may be small, e.g., 

o,(i) ~ ao(1 - 61) 

a~(i') --~ ao(1 - 6[) 

02 = a o ( 1  - 6 ~ - , 5 1 )  

so that, to approximate first order in the fractional 
shifts, 6, 

AAG = - 2  kT dz61 

for each atomic coordinate affected. 
Even rms shifts of the order of 1% per atom, 

scarcely observable with current techniques, if sum- 
med over much of the molecule would give cooper- 
ative free energies of the order of kT. Again, in this 
classical treatment, the effect is entirely entropic. 

Discussion 

We have shown how long-range interactions between 
ligand binding sites on a macromolecule might be 
produced by purely dynamic processes, over and 
above any additional effects due to conformational 
change. With plausible and experimentally verifiable 
assumptions about the magnitudes of ligand-induced 
changes in vibrational frequencies or thermal fluc- 
tuation amplitudes, allosteric interaction free energies 
amounting to several kJ .  mo1-1 can be estimated. 
Moreover, the effect can arise both from highly 
correlated global oscillations in the protein and from 
uncorrelated random motion of individual atoms or 
groups. Although we have concentrated on the 
simplest case of cooperative interactions between two 
identical sites in order to simplify the algebra, it is 
clear that similar arguments apply in the more general 
cases of allosteric communication and, by appro- 
priate adjustment of dynamic amplitudes and fie- 

quencies, all the familiar phenomena of activation, 
inhibition, positive and negative cooperativity might 
be reproduced. 

Furthermore, the effects might not be limited 
solely to equilibrium binding parameters. Rate 
processes such as enzymic catalysis or ligand attach- 
ment and dissociation rates, which depend on 
relatively rare thermal fluctuations ("activation 
steps"), might also be subject to control via the 
dynamic processes we have been describing. Such 
rare fluctuations would not contribute significantly to 
the thermodynamic ligand-binding affinities, but 
could give rise to the sort of kinetic allosteric effects 
seen in some systems (Dixon and Webb, 1979). For 
example, the rates of attachment or release of a 
ligand requiring the transient opening of the jaws of 
the active site (or a "gate" or "channel") might well 
be increased, or suppressed, if that particular mode of 
motion were coupled to similarly transient events at 
other ligand sites. The ramifications in such areas as 
transmembrane communication and translocation 
remain to be explored. 

Although the concept of dynamically mediated 
allosteric interaction might appear unfamiliar and 
hard to visualize, at first, the molecular mechanism is 
fundamentally the same as in the more familiar 
process of conformational change. The basic require- 
ment for long-range inter-site communication is the 
existence of atoms or structural groups dispersed 
throughout the protein molecule which, directly or 
indirectly, experience the presence of ligands at each 
of the sites concerned, and these effects could be 
either static or dynamic. 

In practice ligand-induced changes in both the 
mean conformation and dynamics are to be expected, 
and even in cases where a gross conformational 
change can be demonstrated the associated dynamic 
changes may in fact be the real source of allosteric 
effects. Experimentally, the situation will be difficult 
to resolve especially as, given the finite resolution of 
structural methods, it will always be difficult to rule 
out "small" (i.e., not observed) conformational 
changes. But, one advantage of our dynamic for- 
malism is that the interactive free energies are, within 
the approximations, expressed in terms of quantities 
which are, in principle, measurable - i.e., changes in 
normal mode frequencies and/or mean square ampli- 
tudes of coordinate fluctuations. Thus quantitative 
estimates might be made independent of any model 
of the molecular potential energy surface and the 
attendant problems of solvation, etc., which would be 
required to analyse the conformational contribu- 
tion. 

We have shown that dynamically mediated co- 
operativity should be entropy driven: that is, binding 
of a second ligand is made thermodynamically more 



favourable because of a less negative AS °. Similarly, 
with the failure of equipartition due to quantum 
effects, the enthalpy changes are in the opposite 
direction, i.e., more exothermic for binding the first 
ligand. It is also straightforward to show that heat 
capacity changes (A Cp) on ligand binding are expected 
to be negative (Sturtevant 1977), and more so in this 
case for the first ligand. Reliable experimental data 
on relevant systems are, unfortunately, scarce and we 
are aware of only one detailed study, involving 
calorimetric measurements of cooperative binding of 
NAD to glyceraldehyde phosphate dehydrogenase 
(Niekamp et al. 1977). It is gratifying that the results 
are in accord with our expectations. But, even with 
such painstaking experiments, estimation of individ- 
ual site binding parameters is not trivial and can be 
influenced by the choice of binding model (Niekamp 
et al. 1977), and data on other systems are sorely 
needed. 

In conclusion, it is worth drawing attention to 
recent experiments on the appearance of allosteric 
effects in non-biological systems, for which dynamic 
conformational interpretations similar to those pre- 
sented here are now receiving some consideration 
(Onan et al. 1983). 
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